首页 > 实时讯息 >
大模型既要“吃得饱”更要“吃得好”
0次浏览 发布时间:2025-03-04 19:04:00◎科技日报 刘 合
前段时间,网络上流传着一些由大模型生成的“异次元篇章”。比如,有人让大模型续写《红楼梦》情节时,竟得出一幕“贾宝玉倒拔垂杨柳”的奇景,令人啼笑皆非。之所以会出现这种“混搭”和“幻觉”,是因为大模型不仅学习了原著,还“广纳博采”了不少错误信息。
这些人工智能(AI)生成的“胡言乱语”虽是网友们茶余饭后的笑谈,但提醒我们要清醒认识到其背后折射出的问题:数据质量是大模型应用成败的关键。以个性化推荐AI系统为例,一些企业在开发过程中,虽然收集了大量的用户行为数据,但数据中充斥着错误的标注、重复的数据以及相互矛盾的信息,数据的量增加了,但系统推荐的准确性并没有显著提升。《自然》杂志(Nature)刊登的一篇有关大模型可靠性研究的文章指出,一个西班牙研究团队发现,包括OpenAI公司的GPT在内的几个大模型升级后,虽然参数量更大了,误答情况却更严重了。因此,大模型长得壮不壮,不仅取决于“食量”(即数据的数量),更在于食物的“质量”(即数据的质量)——吃得饱并不等同于吃得好。
数据是大模型的基石,在数据质量不高、可靠性缺失的情况下,一味追求大模型参数量的增加,不仅无法提升模型性能,反而会放大偏差和谬误,产生更多不可信数据。如此一来,势必造成计算与存储资源的浪费,增加开发和维护成本,降低用户信任度。更为严重的是,这种“大模型幻觉”和“灾难性遗忘”现象如果发生在精确性要求极高的工业生产领域中,还可能引发不可预测的风险和隐患。以油气勘探为例,基于大模型给出的错误预测进行开采可能导致数亿元的资金损失,并对自然环境造成不可逆转的破坏。
提升大模型性能,关键是处理好数据“质”和“量”的关系,构建大规模、高质量的数据集。应建立完善的数据收集、清洗、验证和存储机制,加强对数据质量的监控和评估,确保数据的准确性、完整性和一致性。此外,还应注重跨领域合作,引入数据科学家、AI算法工程师等多方力量,开展大模型算法合作、制定数据共享和隐私安全保密协议,推动大模型产学研用生态建设。
如今,大模型的发展已迈入多模态融合阶段。通过加强数据治理,优化人工智能学习、训练和验证的“基础食材”,端上大规模、高质量、多模态数据集的“丰盛大餐”,必将助力大模型能力的提升,让人工智能更好地赋能千行百业、造福人类社会。
来源: 科技日报
相关文章
- 2025-06-18 12:50:00 朱鹤新:缩减外商直接投资外汇登记流程和资金使用负面清单
- 2025-06-16 18:16:00 华为数字能源发布全球首个构网型光储解决方案
- 2025-06-14 00:01:00 富力地产5月销售额达13.7亿 年内累计总销售收入55亿元
- 2025-06-13 17:17:00 右江区5家企业入选2025年广西智能制造拟认定名单
- 2025-06-13 17:08:00 有意"思”的科普丨农业“神农大模型”的科技魔法